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NEW FORM OF THE EQUATIONS OF MOTION OF A VISCOUS FLUID

IN LAGRANGIAN VARIABLES

UDC 532.516A. A. Abrashkin and E. I. Yakubovich

An equation is derived which describes the motion of an incompressible viscous fluid in Lagrangian
variables. Velocity circulations over contours enclosing infinitesimal areas in each of the planes of
the Lagrangian variables (Cauchy invariants) are taken to be unknown functions. Examples of exact
solutions obtained using this method of flow description are analyzed.
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Introduction. A derivation of the Navier–Stokes equations in Lagrangian variables is given in [1, 2]. The
continuity equation for homogeneous incompressible fluid flows is written as

[X1, X2, X3] = D0(a, b, c). (1)

Here X1 = X(a, b, c, t), X2 = Y (a, b, c, t), and X3 = Z(a, b, c, t) are the coordinates of fluid-particle trajectories and
a, b, and c are Lagrangian variables. The square brackets denote the Jacobian in the Lagrangian variables. The
function D0 is a function of the Lagrangian variables and does not depend on time t. If the initial position of a
fluid particle coincides with the Lagrangian coordinates, i.e., X0 = a, Y0 = b, and Z0 = c, then D0 = 1.

The equations of motion are written as
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Here ρ is the density, p is the pressure, and ν is the kinematic viscosity. Equations (1) and (2) for the unknowns
X(a, t) = Xi(a, b, c, t), where i = 1, 2, and 3, and p(a, b, c, t) constitute the complete system of dynamic equations
for an incompressible viscous fluid in the Lagrangian variables. A derivation of these equations was first given in [3].
Later, the same result was obtained independently by Monin [4] (see also [1]). In [1, 3, 4], it was assumed that
D0 = 1.

In the present paper, we propose a new method of representing the equation of motion (2) in which the
unknown functions are the velocity circulations over the contours enclosing infinitesimal areas in each of the planes
of the Lagrangian variables. Examples of exact solutions obtained using the new method of representing the
equations of viscous fluid dynamics are considered.

1. Equations for the Cauchy Invariants. The equations of motion are written with the use of the
Newton equation for an individual fluid particle. The viscous force fv acting per unit mass of an incompressible
fluid is equal to

fv = νΔXV = −ν rotX (rotX V ). (1.1)

Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod 603000; abrash@hydro.appl.sci-
nnov.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 13–18, March–April,
2007. Original article submitted March 10, 2006; revision submitted May 2, 2006.

0021-8944/07/4802-0153 c© 2007 Springer Science +Business Media, Inc. 153



In view of (1.1), the equations of motion for a fluid particle are written as

rtt = −ρ−1∇p − ν rotX (rotX rt), (1.2)

where r = (X, Y, Z). We introduce the Jacobi matrix R = ∂Xi/∂aj and multiply the left side of Eq. (1.2) by its
transposed matrix R∗. As a result, we obtain

R∗rtt = −ρ−1∇ap − νR∗ rotX (rotX rt). (1.3)

The subscripts a and X at the sign of the vector differential operation indicate that the differentiation is performed
over Lagrangian or Eulerian variables, respectively.

To eliminate pressure, we apply a curl operation in the Lagrangian variables to Eq. (1.3):

rota (R∗rtt) = −ν rota (R∗ rotX (rotX rt)). (1.4)

Setting ν = 0, using the iquality [5, p. 12]

R∗rtt =
∂

∂t
(R∗rt) − 1

2
∇a(|rt|2),

and integrating over time, we obtain

rota (R∗rt) = S(a, b, c) (1.5)

or, in coordinate form,

XtbXc − XtcXb + YtbYc − YtcYb + ZtbZc − ZtcZb = S1(a, b, c),

XtcXa − XtaXc + YtcYa − YtaYc + ZtcZa − ZtaZc = S2(a, b, c), (1.6)

XtaXb − XtbXa + YtaYb − YtbYa + ZtaZb − ZtbZa = S3(a, b, c).

Here S1, S2, and S3 are arbitrary functions of the Lagrangian variables (integrals of motion). Equations (1.6) were
first formulated by Cauchy [6]; therefore, the functions S1, S2, and S3 will be referred to as the Cauchy invariants.
If the initial positions of the fluid particles coincide with the Lagrangian coordinates, the Cauchy invariants are
equal to the initial value of the corresponding vorticity vector components Ω:

ΩX0 = S1, ΩY 0 = S2, ΩZ0 = S3. (1.7)

Generally, in the choice of Lagrangian variables, such a simple relationship between the vorticity vector components
and the Cauchy invariants is absent. The quantity S1 has the meaning of the vorticity flux through unit area in
the plane of the Lagrangian variables b and c. The time independence of the function S1 is due to the conservation
of circulation over the infinitesimal contour δbδc [6]. Similarly, the time independence of S2 and S3 is due to the
conservation of circulation over the contours δaδc and δaδb, respectively.

We will treat expression (1.5) as the definition of the Cauchy invariant vector. In the case of a viscous fluid,
the quantities S1, S2, and S3 depend on time, but we shall still call them the Cauchy invariants, as in the case of
an ideal fluid.

From the calculations performed above, it follows that the left side of Eq. (1.4) is equal to the time derivative
of the Cauchy invariant vector:

St = rota (R∗rtt). (1.8)

Therefore, Eq. (1.4) can be written as

St = −ν rota (R∗ rotX (rotX rt)). (1.9)

The right side of Eqs. (1.9) should be differentiated in the Lagrangian coordinates to take into account
viscosity within the framework of the given approach. We use the iquality which is the curl operation in the
transformation from one variables to the other [7]:

rotX A =
R

D0
rota(R∗A). (1.10)
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Here A is an arbitrary vector and D0 = detR is the Jacobian of the transformation. In the particular case where
A = rt, Eq. (1.10) implies the formula

Ω =
R

D0
S.

If the initial positions of the fluid particles coincide with the Lagrangian coordinates, this formula, apparently,
becomes relation (1.7).

To write Eq. (1.9) in Lagrangian form, we use the identity (1.10) twice. As a result, we obtain the equation

rota (R∗rtt) = −ν rota (D−1
0 R∗R̂ rota (D−1

0 R∗R rota (Rrt))).

Taking into account relations (1.7) and (1.8) and introducing the new matrix

g = R∗R, g = gij , i, j = 1, 2, 3,

g11 = X2
a + Y 2

a + Z2
a , g12 = g21 = XaXb + YaYb + ZaZb,

g22 = X2
b + Y 2

b + Z2
b , g13 = g31 = XaXc + YaYc + ZaZc,

g33 = X2
c + Y 2

c + Z2
c , g23 = g32 = XbXc + YbYc + ZbZc,

we obtain the equation for the Cauchy invariants:

St = −ν rota (D−1
0 g rota(D−1

0 gS)). (1.11)

The determinant D0 coincides with the right side of the continuity equation. If the initial positions of the particles
are taken to be the Lagrangian coordinates, the determinant is equal to unity and the form of Eq. (1.11) is simplified:

St = −ν rota(g rota(gS)). (1.12)

Equations (1.5) and (1.12) are a new form of the hydrodynamic equations for viscous fluid flows. It should
be noted that the differential equation (1.5) in this system of equations is the same as for an ideal fluid. The
transformations resulted in the separation of the time scale into inertia scales, which are described by Eq. (1.5),
and viscous scales, which are described by Eq. (1.12).

In the case of two-dimensional flows, Eq. (1.12) is slightly simplified. The Cauchy invariant vector has only
one component, which is directed, for example, along the c axis (in this case, S = S3). In addition, we take into
account that

gijS = S3,

so that Eq. (1.12) ultimately becomes (subscript 3 is omitted):

Stc
0 = −ν rota

(
D−1

0 g
(
a0 ∂

∂b
D−1

0 S − b0 ∂

∂a
D−1

0 S
))

. (1.13)

Here a0, b0, and c0 are unit vectors of the Lagrangian coordinate system. In scalar form, Eq. (1.13) is written as

St = {(D−1
0 g11(D−1

0 S)b − D−1
0 g12(D−1

0 S)a)b − (D−1
0 g21(D−1

0 S)b − D−1
0 g22(D−1

0 S)a)a},

g11 = X2
a + Y 2

a , g12 = g21 = XaXb + YaYb, g22 = X2
b + Y 2

b , (1.14)

D0 = XaYb − XbYa.

Here the subscripts denote differentiation with respect to the corresponding variables. We note that by virtue of
the continuity equation, the quantity D0 does not depend on time. In addition, formulas (1.13) and (1.14) are
simplified by setting D0 = 1.

Equations (1.12) and (1.14) are equivalent to system (1), (2) but they do not contain pressure. It should be
calculated separately by substituting the solution of Eqs. (1.12) or (1.14) into system (1), (2).

2. Examples of Flows. Both forms of the viscous equation are rather unusual; therefore, it is reasonable
to test them for some particular examples. For this, we use the well-known exact solutions that admit explicit
analytic representations in the Lagrangian variables. Two of them correspond to the straight-line trajectories of
fluid particles, and two to circular trajectories.
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2.1.Flows with Straight-Line Trajectories of Fluid Particles. Let a flat wall at rest begin to move suddenly
at constant velocity U0 (the first Stokes problem) in its plane. We determine the flow caused by this motion.

We assume that the wall coincides with the xz plane and moves along the x axis. The solution is sought in
the form

X = a + f(b, t), Y = b, Z = c. (2.1)

This solution satisfies the continuity equation for an arbitrary function f . However, the equation for the Cauchy
invariants imposes constraints on the choice of this function. The expressions for R, S, and g are written as

R =

⎛
⎝ 1 fb 0

0 1 0
0 0 1

⎞
⎠ , S =

⎛
⎝ 0

0
−ftb

⎞
⎠ , g =

⎛
⎝ 1 fb 0

fb 1 + f2
b 0

0 0 1

⎞
⎠ . (2.2)

Substitution of these relations into Eq. (1.12) yields the required equation for the function f :

fttb = νftbbb.

Integration of this equation with respect to the Lagrangian variable yields

ftt = νftbb + λ(a, t). (2.3)

From Eqs. (2), it is easy to find that λ(a, t) = −ρ−1pa. We assume that the pressure is constant over the entire
space. Then, λ = 0, and the expression (2.3) has the meaning of the heat-conduction equation for the horizontal
velocity Xt = ft = u(b, t). If the wall begins to move suddenly at velocity U0 (at t = 0), the solution of this equation
is given by

u = U0 erfc η, η = b/(2
√

νt ),

erfc η =
2√
π

∞∫
η

exp(−η2) dη = 1 − erf η = 1 − 2√
π

η∫
0

exp (−η2) dη.

The single nonzero Cauchy invariant for the given flow is equal to

S3 =
U0√
πνt

exp
(
− b2

4νt

)

and depends on time.
Let an unbounded flat wall performs straight-line harmonic vibrations in its plane at frequency ω (the second

Stokes problem). As in the problem considered above, we assume that the x axis is directed along the wall and that
the y axis is perpendicular to the wall. The fluid flow is still described by expressions (2.1), and the fluid pressure
is considered to be distributed uniformly (λ = 0). Since the fluid adheres to the wall, the horizontal velocity u(b, t)
on its surface obeys the condition u(b, t)

∣∣∣
b=0

= u(0, t) = U0 cosωt, which is the boundary condition for Eq. (2.3).

For Eq. (2.3) with the given boundary conditions, the following expression holds:

u(b, t) = U0 e−kb cos (ωt − kb), k =
√

ω/(2ν).

Thus, the fluid particles near the wall perform vibrational motion with the amplitude U0 exp (−kb) decreasing with
distance from the wall, and the vibrations of the fluid layer at distance b from the wall lag in phase by b

√
ω/(2ν)

behind the vibrations of the wall.
For the given type of flow, the Cauchy invariant is equal to

S3 = kU0 e−kb[cos (ωt − kb) − sin (ωt − kb)].

Equations (1.12) do not include pressure. To calculate it, one needs each time to solve the conventional
equations of motion in the Lagrangian variables. In this sense, Eqs. (1.12) are incomplete.

2.2. Flows with Circular Trajectories of Fluid Particles. We consider flow between two coaxial cylinders
rotating at different but constant angular velocities. Let the radii of the inner and outer cylinders be equal to R1

and R2, respectively, and let the angular velocities of their rotation be ω1 and ω2, respectively. It is more convenient
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to consider this fluid flow in polar coordinates. We denote the Euler polar coordinates by R∗ and Φ and the
Lagrangian coordinates by r and ϕ, so that

X = R∗ cosΦ, Y = R∗ sin Φ, a = r cosϕ, b = r sin ϕ.

We consider flows with circular streamlines where

R∗ = r, Φ = ϕ + f(r, t), p = p(r, t). (2.4)

Writing system (1), (2) in the variables R∗(r, ϕ) and Φ(r, ϕ) and substituting relations (2.4) into this system, we
obtain the following constraints on the choice of f :

ρrf2
t =

dp

dr
,

rftt = ν(rftrr + 3ftr).
(2.5)

Since ft is the angular velocity of rotation of the fluid particles, the boundary conditions for this system are given
by

ft = ω1 at r = R1, ft = ω2 at r = R2. (2.6)

We assume that f is a linear function of time. Then, the expression for this function subject to constraints (2.6)
has the form

ft =
ω2R

2
2 − ω1R

2
1

R2
2 − R2

1

+
(ω1 − ω2)R2

1R
2
2

(R2
2 − R2

1)r2
.

The Cauchy invariant for this flow is equal

S3 =
1
r

∂

∂r
(r2ft) =

2(ω2R
2
2 − ω1R

2
1)

R2
2 − R2

1

and does not depend on time because the flow is steady-state. The same result can be obtained in a simpler way
by calculating the vorticity.

Substituting the expression

ft =
Γ0

2πr2

[
1 − exp

(
− r2

4νt

)]
(2.7)

in Eq. (2.5), it is easy to see that it is an exact solution of this equation that descries the diffusion of the vorticity
from the vortex line with the initial circulation Γ0 [8].

For the flow (2.7), the Cauchy invariant calculated by formula (1.5) is equal to

S3 =
1
r

∂

∂r
(r2ft) =

Γ0

4πνt
exp

(
− r2

4νt

)
.

At the initial time (t = 0), the quantity S3 has a singularity (the vorticity is equal to infinity). Subsequently, the
point vortex spreads more and more. The vorticity at the initial location of the vortex becomes finite but it is still
maximal in the flow region at the given time.

The invariant S3 increases in the case of convergent flow and decreases in the case of divergent flow. In
addition, the invariant S3 coincides with the value of the vorticity at the point where the given fluid particle is
located.
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